If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5a^2+27a+10=0
a = 5; b = 27; c = +10;
Δ = b2-4ac
Δ = 272-4·5·10
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(27)-23}{2*5}=\frac{-50}{10} =-5 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(27)+23}{2*5}=\frac{-4}{10} =-2/5 $
| X+6/14=1/7+x-8/3 | | 3(d-2)=5(2+8) | | -1-6j=6-7j | | -5-6f=-7f | | -x/3-(-1/4x)=14 | | -2d+3=-4d-5 | | X-3x=-(5+3) | | w/5=3/10w+7 | | 2x+7+3=x+10 | | -4+6v=8v | | 5/7x=111/14 | | 0.10(y-5)+0.02y=0.04y-0.9 | | 149=-w+204 | | 5f=-8+6f | | X-23=2x/3 | | x+4/2=2x-9/3 | | -x+68=232 | | -30-6=-9c-3 | | -9n=-4-10n | | 5x-3+5x-3+x-1=180 | | w-5.5=-3.1 | | 15f+(-8f)+13=55 | | 10-3v=19 | | X^2-10x+130=180 | | t-25=3 | | (m/m-4)-5=(4/m-4) | | 3x-1=(2)5x-4 | | -m-7=-2m | | n2-n-182=0 | | 7x+6=76−3x | | t-21=5 | | 8-^6r-4=38 |